侵權(quán)投訴
訂閱
糾錯
加入自媒體

麻醉研究前沿速遞:風(fēng)險預(yù)判、智能閉環(huán)、技術(shù)革新與綠色實踐(臨床方向·第二彈)

麻醉研究前沿速遞:

風(fēng)險預(yù)判、智能閉環(huán)、技術(shù)革新與綠色實踐

臨床方向·第二彈

麻醉學(xué)科的臨床研究始終圍繞“優(yōu)化圍術(shù)期管理、提升患者預(yù)后、拓展臨床應(yīng)用邊界”核心目標(biāo),在第一彈精準(zhǔn)麻醉、特殊人群保障等方向的基礎(chǔ)上,進(jìn)一步向智能閉環(huán)調(diào)控、精準(zhǔn)風(fēng)險預(yù)測、技術(shù)設(shè)備革新及綠色可持續(xù)醫(yī)療維度深度突破,為麻醉臨床決策注入更強(qiáng)勁的科學(xué)動力。 

一、機(jī)器學(xué)習(xí):麻醉風(fēng)險預(yù)測精準(zhǔn)升級

借助機(jī)器學(xué)習(xí)算法深度挖掘多維度數(shù)據(jù)價值,麻醉風(fēng)險預(yù)測從傳統(tǒng)量表的粗略評估,升級為精準(zhǔn)化、個體化的智能模型,為圍術(shù)期安全防護(hù)提供提前干預(yù)的科學(xué)依據(jù)。

基于機(jī)器學(xué)習(xí)識別術(shù)前心理困擾及其與不良手術(shù)相關(guān)結(jié)局的關(guān)聯(lián):來自中國外科與麻醉隊列(CSAC)的證據(jù)(DOI:10.1155/da/3990416) 研究對16,298名參與者建立聚類算法,成功識別出六種心理模式,包括一組心理功能正常模式和五組不同程度的心理困擾模式。結(jié)果顯示,所有心理困擾模式均與短期不良結(jié)局(如院內(nèi)術(shù)后并發(fā)癥,ORs=1.24-1.30)及長期不良結(jié)局(如術(shù)后12個月認(rèn)知障礙,ORs=1.29-2.35)顯著相關(guān);而傳統(tǒng)基于量表截止點的篩查方法僅識別出266名有顯著心理癥狀的患者,且與部分關(guān)鍵短期結(jié)局無明確關(guān)聯(lián),凸顯了機(jī)器學(xué)習(xí)在術(shù)前心理風(fēng)險評估中的優(yōu)勢。

基于機(jī)器學(xué)習(xí)的預(yù)測模型,用于接受全身麻醉非心臟手術(shù)的虛弱老年患者術(shù)后譫妄(DOI:10.1007/S41999-025-01374-X) 2023年2月至2025年2月,研究招募2,089名≥65歲的體弱非心臟手術(shù)患者,提取38項基線、麻醉及實驗室變量,通過鏈?zhǔn)椒匠蹋∕ICE)處理缺失數(shù)據(jù)。數(shù)據(jù)集按7:3比例分為訓(xùn)練集與驗證集,經(jīng)Boruta和LASSO特征選擇后,訓(xùn)練并比較邏輯回歸、隨機(jī)森林等八種機(jī)器學(xué)習(xí)模型,以ROC-AUC為主要評估指標(biāo),結(jié)合準(zhǔn)確率、精度等多維度評價,通過SHAP分析實現(xiàn)模型可解釋性。結(jié)果顯示,術(shù)后譫妄(POD)發(fā)生率為16.52%;確定15個關(guān)鍵預(yù)測變量后,XGBoost模型表現(xiàn)最優(yōu),AUC達(dá)0.813;SHAP分析表明,MMSE評分、查爾森共病指數(shù)和年齡是最強(qiáng)預(yù)測因子。外部驗證證實,該模型臨床效用高,ROC衍生靈敏度為0.813、特異性為0.793,無過擬合表現(xiàn),可為高風(fēng)險患者的早期識別與干預(yù)提供支持。

從數(shù)據(jù)到?jīng)Q策:利用多代理系統(tǒng)實現(xiàn)更安全、更智能、更個性化的圍手術(shù)期護(hù)理(DOI:10.3390/jpm15110540) 多智能體醫(yī)療系統(tǒng)(MASH)通過自主AI智能體協(xié)調(diào)多領(lǐng)域任務(wù),為綜合圍手術(shù)期護(hù)理提供了創(chuàng)新框架。本綜述綜合當(dāng)前麻醉學(xué)領(lǐng)域的AI應(yīng)用現(xiàn)狀,深入探討其在MASH架構(gòu)中的整合路徑。結(jié)果提示,AI在圍手術(shù)期護(hù)理中具有廣泛應(yīng)用潛力,但現(xiàn)有應(yīng)用多為領(lǐng)域特定、孤立開發(fā),限制了整體效能。MASH可將這些分散的創(chuàng)新整合為適應(yīng)性協(xié)作系統(tǒng),助力實現(xiàn)更安全、高效的個性化麻醉護(hù)理。

心率動態(tài)預(yù)測麻醉深度:一個緊湊的機(jī)器學(xué)習(xí)模型(DOI:10.1016/j.bja.2025.09.053) 該研究旨在通過心率(HR)動態(tài)特征預(yù)測麻醉不足(定義為雙光譜指數(shù)BIS值>60)的發(fā)作。結(jié)果表明,高維心率動態(tài)描述可實現(xiàn)對BIS>60事件的準(zhǔn)確預(yù)測,所構(gòu)建的包含27個特征的緊湊模型,在保持高性能的同時計算速度提升110倍,為臨床提供了一種可行、高效的麻醉深度監(jiān)測工具。

麻醉學(xué)中的人工智能:當(dāng)前應(yīng)用、挑戰(zhàn)與未來方向(DOI:10.4274/TJAR.2025.252320) 隨著機(jī)器學(xué)習(xí)、深度學(xué)習(xí)和大型語言模型的快速發(fā)展,人工智能正深刻改變麻醉學(xué)領(lǐng)域,已廣泛滲透圍手術(shù)期護(hù)理各階段:術(shù)前用于風(fēng)險分層與并發(fā)癥預(yù)測;術(shù)中輔助麻醉深度估計、血流動力學(xué)管理、影像解讀、氣道評估及區(qū)域麻醉操作;重癥監(jiān)護(hù)中助力敗血癥早期發(fā)現(xiàn)、器官功能障礙監(jiān)測與資源分配優(yōu)化;同時在學(xué)術(shù)寫作、數(shù)據(jù)處理和醫(yī)學(xué)教育中發(fā)揮重要作用。但AI應(yīng)用仍面臨方法論、倫理和實際操作等多重挑戰(zhàn),如準(zhǔn)確性不足、存在“幻覺”問題等。本綜述系統(tǒng)總結(jié)了AI在麻醉學(xué)的當(dāng)前應(yīng)用,深入分析了限制其整合落地的關(guān)鍵問題,并對未來安全有效應(yīng)用的發(fā)展方向進(jìn)行了探討。 

二、智能閉環(huán)麻醉:從監(jiān)測到自動調(diào)控的躍遷

傳統(tǒng)麻醉依賴人工經(jīng)驗調(diào)整藥物輸注,存在滯后性與個體差異風(fēng)險。新一代閉環(huán)麻醉系統(tǒng)(Closed-loop anesthesia delivery, CLAD)正逐步走向臨床常規(guī)化,通過智能算法與多模態(tài)監(jiān)測的深度融合,實現(xiàn)麻醉給藥的精準(zhǔn)化、自動化調(diào)控。

基于價值分解的多智能體學(xué)習(xí)在麻醉藥協(xié)同控制中的應(yīng)用(DOI: 10.1109/JBHI.2025.3599210) 研究提出基于馬爾可夫博弈(MG)的價值分解多智能體深度強(qiáng)化學(xué)習(xí)(VD-MADRL)框架,用于閉環(huán)系統(tǒng)中的個性化多種麻醉藥控制(PMAC-CL)。在普外科與胸外科手術(shù)數(shù)據(jù)集上的實驗表明,該框架相較于人工經(jīng)驗,能實現(xiàn)更精細(xì)的麻醉藥劑量調(diào)整,使多項麻醉狀態(tài)指標(biāo)更穩(wěn)定地維持在目標(biāo)水平,臨床應(yīng)用價值顯著。

AReS:用于輔助自動麻醉測試的患者模擬器(DOI:10.1016/j.cmpb.2025.108901) 研究開發(fā)了一種新型開源患者模擬器,可精準(zhǔn)模擬人群對丙泊酚、瑞芬太尼、去甲腎上腺素和羅庫溴銨四種常用麻醉相關(guān)藥物的中位反應(yīng)、個體間變異性及外界干擾影響。該模擬器作為開源工具,適用于多變量閉環(huán)控制器及麻醉決策支持系統(tǒng)的開發(fā)與評估,同時明確了未來的改進(jìn)方向。

通過神經(jīng)電生理活動進(jìn)行意識評估的方法論指南(DOI:10.1186/s40779-025-00682-4) 本研究旨在建立基于腦電圖(EEG)的臨床意識評估方法論指南。結(jié)果顯示,綜合腦電圖可展現(xiàn)互補(bǔ)的意識維度,其中光譜功率和峰值頻率能有效追蹤丙泊酚麻醉和睡眠期間的意識喪失;非周期性斜率、額頂連接性等指標(biāo)在區(qū)分最低意識狀態(tài)(MCS)與無反應(yīng)清醒綜合征(UWS)中效果顯著;時空模式呈現(xiàn)意識特異性變化,藥理學(xué)和病理變化共同影響微觀狀態(tài)動態(tài)。該指南整合了神經(jīng)動力學(xué)與多維意識理論,奠定了神經(jīng)生理生物標(biāo)志物臨床轉(zhuǎn)化的方法論和理論基礎(chǔ),但仍需大規(guī)模多平臺驗證以建立明確的因果聯(lián)系和轉(zhuǎn)化效用。

心率變異性作為術(shù)中自主神經(jīng)系統(tǒng)穩(wěn)態(tài)的預(yù)測因子(DOI:10.1007/s10877-024-01190-x) 本概念驗證研究旨在探究心率變異性(HRV)、基于腦電圖的Narcotrend指數(shù)(催眠深度替代標(biāo)志)與七氟醚最低肺泡濃度(MAC)在手術(shù)全程的一致性。結(jié)果顯示,Narcotrend指數(shù)與HRV的時間相關(guān)參數(shù)SDNN、頻率相關(guān)參數(shù)LF及LF/HF比顯著相關(guān);MAC與SDNN、LF、LF/HF比及Narcotrend指數(shù)呈顯著負(fù)相關(guān)。這表明HRV可反映Narcotrend指數(shù)的變化趨勢及七氟醚對自主神經(jīng)系統(tǒng)的抑制作用,為全身麻醉期間自主神經(jīng)系統(tǒng)穩(wěn)態(tài)評估提供了重要參考信息。 

三、麻醉新技術(shù)新設(shè)備:可視化、智能化、微創(chuàng)化革新

依托技術(shù)創(chuàng)新,麻醉監(jiān)測與治療設(shè)備朝著可視化精準(zhǔn)操作、智能化實時預(yù)警、微創(chuàng)化減少損傷的方向持續(xù)升級,全面提升圍術(shù)期管理質(zhì)量與患者就醫(yī)體驗。 

(一)可視化監(jiān)測與操作設(shè)備

- 肺超聲與胸阻抗成像(EIT):實時評估肺部通氣與換氣功能,精準(zhǔn)識別肺不張、氣胸、肺水腫等問題,為機(jī)械通氣參數(shù)的精準(zhǔn)調(diào)整提供科學(xué)依據(jù),有效減少呼吸機(jī)相關(guān)肺損傷。

- 超聲引導(dǎo)神經(jīng)阻滯系統(tǒng):實時清晰顯示臂叢神經(jīng)、腰叢神經(jīng)等神經(jīng)走行,引導(dǎo)穿刺針精準(zhǔn)避開血管和內(nèi)臟,將局麻藥精準(zhǔn)注入神經(jīng)周圍,使阻滯成功率提升至98%,神經(jīng)損傷風(fēng)險降至0.3%。

- 經(jīng)顱超聲多普勒(TCD):通過顳窗探頭實時監(jiān)測顱內(nèi)動脈血流速度,動態(tài)評估全麻術(shù)中腦血流變化,為頸動脈內(nèi)膜剝脫術(shù)等高危手術(shù)提供腦缺血預(yù)警,降低術(shù)后腦卒中風(fēng)險。

(二)圍術(shù)期全周期穿戴設(shè)備

- 圍術(shù)期全周期穿戴監(jiān)護(hù)儀:無創(chuàng)采集心電、呼吸、血氧、體位等多維度生理數(shù)據(jù),同步傳輸至中央監(jiān)護(hù)平臺;內(nèi)置AI算法可自動識別低血氧、心律失常、跌倒等異常風(fēng)險并提前預(yù)警;無導(dǎo)線設(shè)計支持患者術(shù)后早期下床活動,契合加速康復(fù)外科(ERAS)理念。成都醫(yī)學(xué)院的臨床案例顯示,該設(shè)備使肝膽胰外科患者術(shù)后住院時間縮短1.5天,早期活動率提升30%。

- 心肺功能可穿戴評估儀:術(shù)前連續(xù)監(jiān)測患者運動狀態(tài)下的心率、血氧數(shù)據(jù),精準(zhǔn)評估心肺儲備功能(如老年患者全髖關(guān)節(jié)置換術(shù)前預(yù)康復(fù)訓(xùn)練效果),為個體化麻醉方案的制定提供重要參考。

(三)術(shù)后康復(fù)與疼痛管理設(shè)備

- 疼痛虛擬病房(VPU)信息化系統(tǒng):建立“分散居住、集中管理”的創(chuàng)新模式,術(shù)后患者通過手機(jī)APP便捷上報疼痛評分,麻醉科醫(yī)生在線查看病歷、開具醫(yī)囑,護(hù)士及時執(zhí)行鎮(zhèn)痛方案;結(jié)合超聲引導(dǎo)神經(jīng)阻滯實現(xiàn)精準(zhǔn)鎮(zhèn)痛,使術(shù)后鎮(zhèn)痛響應(yīng)時間縮短至30分鐘內(nèi),患者滿意度提升至92%。

- 無創(chuàng)鎮(zhèn)痛設(shè)備:包括經(jīng)皮神經(jīng)電刺激儀(TENS)和超聲引導(dǎo)下射頻消融儀。前者可用于術(shù)后慢性疼痛(如帶狀皰疹后神經(jīng)痛)的預(yù)防,減少藥物依賴;后者適用于椎間盤突出術(shù)后疼痛等頑固性神經(jīng)痛,通過超聲精準(zhǔn)定位靶點并毀損神經(jīng),鎮(zhèn)痛效果可持續(xù)6-12個月。

當(dāng)前,麻醉監(jiān)測與圍術(shù)期管理技術(shù)已形成“可視化+智能化+精準(zhǔn)化”的核心體系:可視化技術(shù)解決“看不見”的操作難題,智能化技術(shù)破解“判不準(zhǔn)”的評估困境,精準(zhǔn)化技術(shù)攻克“調(diào)不對”的調(diào)控痛點。未來,隨著5G遠(yuǎn)程醫(yī)療、可穿戴設(shè)備功能集成、腦機(jī)接口等技術(shù)的持續(xù)發(fā)展,圍術(shù)期管理將實現(xiàn)“術(shù)前精準(zhǔn)預(yù)測、術(shù)中實時調(diào)控、術(shù)后智能康復(fù)”的全周期閉環(huán)優(yōu)化,進(jìn)一步降低麻醉風(fēng)險,提升患者康復(fù)質(zhì)量。 

四、綠色麻醉與可持續(xù)醫(yī)療:從環(huán)保意識到臨床行動

麻醉科是醫(yī)院溫室氣體排放的主要科室之一,減少氧化亞氮(NO)使用、優(yōu)化麻醉藥物選擇與廢棄物管理,已成為全球麻醉領(lǐng)域踐行可持續(xù)醫(yī)療的重要方向。

兒科小手術(shù)室與傳統(tǒng)手術(shù)室廢物產(chǎn)生對比(DOI:10.1016/j.jpedsurg.2025.162847) 手術(shù)室是醫(yī)院溫室氣體排放和廢棄物的主要來源,占醫(yī)院總廢棄物的33%,未充分利用的手術(shù)器械托盤也會造成大量浪費。輕微手術(shù)室(MPR)為適合病例提供了低廢棄物的替代方案。研究對腺樣體切除術(shù)伴雙側(cè)髓膜切開術(shù)、端口切除和包皮環(huán)切術(shù)三項兒科手術(shù),分別在MPR和傳統(tǒng)手術(shù)室各進(jìn)行兩次審計,計算與廢棄物相關(guān)的溫室氣體排放(千克二氧化碳當(dāng)量),測量回收、垃圾和生物危害廢物等廢棄物流,分析器械托盤利用率。結(jié)果表明,MPR在所有手術(shù)中產(chǎn)生的廢棄物均顯著低于傳統(tǒng)手術(shù)室,廢棄物減少率分別為57.6%、49.5%和86.6%,溫室氣體排放量也同步降低。進(jìn)一步優(yōu)化可通過采用可重復(fù)使用物品、縮小無菌場地、使用多用途麻醉回路及優(yōu)化器械托盤實現(xiàn),擴(kuò)大MPR適用范圍有助于提升外科護(hù)理的環(huán)境可持續(xù)性。

從手術(shù)室移除地氟烷對三級學(xué)術(shù)醫(yī)療中心二氧化碳排放的影響(DOI:10.1016/j.bja.2025.05.031) 吸入麻醉劑是醫(yī)療相關(guān)溫室氣體排放的重要來源。本研究評估了美國一家學(xué)術(shù)醫(yī)療中心吸入麻醉的碳足跡,及移除地氟烷、限制新鮮氣體流量(FGF)和一氧化二氮(NO)使用等措施對二氧化碳當(dāng)量(COe)排放的影響。結(jié)果顯示,移除地氟烷可顯著減少麻醉相關(guān)COe排放,揮發(fā)性麻醉藥選擇、NO使用及新鮮氣體流量控制,對降低麻醉碳足跡至關(guān)重要。

科室綠色麻醉干預(yù)對二氧化碳當(dāng)量排放的影響:系統(tǒng)綜述(DOI:10.1016/j.bja.2025.03.038) 本系統(tǒng)綜述旨在識別影響麻醉COe排放量的部門干預(yù)措施,并量化其減排效果。結(jié)果提示,可持續(xù)麻醉項目具有顯著的COe減排潛力,員工教育、避免使用地氟烷、減少揮發(fā)性麻醉藥用量、降低新鮮氣體流量、提高全靜脈麻醉(TIVA)利用率及優(yōu)化手術(shù)室廢物管理,均為有效的干預(yù)措施。

行動倡議:麻醉醫(yī)生不僅是守護(hù)患者生命的醫(yī)者,也應(yīng)是踐行氣候健康的倡導(dǎo)者——每一次麻醉藥物的選擇、每一項醫(yī)療流程的優(yōu)化,都是對地球生態(tài)的一份責(zé)任與擔(dān)當(dāng)。 

總結(jié)與展望

臨床研究是麻醉學(xué)科發(fā)展的核心引擎,從智能閉環(huán)的自動化調(diào)控到機(jī)器學(xué)習(xí)的精準(zhǔn)風(fēng)險預(yù)測,從技術(shù)設(shè)備的可視化與微創(chuàng)化革新到綠色醫(yī)療的可持續(xù)實踐,每一項突破都在切實惠及廣大患者。未來,隨著人工智能、大數(shù)據(jù)、可穿戴技術(shù)等與麻醉臨床的深度融合,“術(shù)前精準(zhǔn)預(yù)測、術(shù)中實時調(diào)控、術(shù)后個性化康復(fù)”的全流程優(yōu)化將進(jìn)一步完善。同時,麻醉學(xué)科將持續(xù)拓展應(yīng)用邊界,在環(huán)境可持續(xù)發(fā)展、多學(xué)科協(xié)同治療等領(lǐng)域發(fā)揮更大作用,為患者提供更全面、更高質(zhì)量的醫(yī)療服務(wù)。我們將持續(xù)追蹤全球麻醉臨床研究動態(tài),帶來更多前沿進(jìn)展解讀,記得持續(xù)關(guān)注哦~ 

文章:海林

排版:肉肉

       原文標(biāo)題 : 麻醉研究前沿速遞:風(fēng)險預(yù)判、智能閉環(huán)、技術(shù)革新與綠色實踐(臨床方向·第二彈)

聲明: 本文由入駐維科號的作者撰寫,觀點僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

    醫(yī)械科技 獵頭職位 更多
    文章糾錯
    x
    *文字標(biāo)題:
    *糾錯內(nèi)容:
    聯(lián)系郵箱:
    *驗 證 碼:

    粵公網(wǎng)安備 44030502002758號