CVPR2020 | 深蘭科技夜間檢測挑戰(zhàn)賽兩冠一亞,為自動駕駛保駕護(hù)航
3. 數(shù)據(jù)增強(qiáng)
該團(tuán)隊發(fā)現(xiàn) Pixel-level 的增強(qiáng)方式導(dǎo)致了性能結(jié)果大幅下降,因此沒有在這個方向繼續(xù)嘗試。
而圖像增強(qiáng)方式 Retinex,從視覺上看帶來了圖像增強(qiáng),但是該方法可能破壞了原有圖片的結(jié)構(gòu)信息,導(dǎo)致最終結(jié)果沒有提升。
于是,該團(tuán)隊最終選擇了 Spatial-level 的增強(qiáng)方式,使得結(jié)果有一定的提升。
實驗細(xì)節(jié)
1. 將 Cascade rcnn + DCN + FPN 作為 baseline;
2. 將原有 head 改為 Double head;
3. 將 CBNet 作為 backbone;
4. 使用 cascade rcnn COCO-Pretrained weight;
5. 數(shù)據(jù)增強(qiáng);
6. 多尺度訓(xùn)練 + Testing tricks。
實驗結(jié)果
下圖展示了該團(tuán)隊使用的方法在本地驗證集上的結(jié)果:
該團(tuán)隊將今年的成績與去年 ICCV 2019 同賽道冠軍算法進(jìn)行對比,發(fā)現(xiàn)在不使用額外數(shù)據(jù)集的情況下,去年單模型在 9 個尺度的融合下達(dá)到 11.06,而該團(tuán)隊的算法在只用 2 個尺度的情況下就可以達(dá)到 10.49。
未來工作
該團(tuán)隊雖然獲得了不錯的成績,但也基于已有的經(jīng)驗提出了一些未來工作方向:
1. 由于數(shù)據(jù)的特殊性,該團(tuán)隊嘗試使用一些增強(qiáng)方式來提高圖片質(zhì)量、亮度等屬性,使圖片中的行人更易于檢測。但結(jié)果證明這些增強(qiáng)方式可能破壞原有圖片結(jié)構(gòu),效果反而降低。該團(tuán)隊相信會有更好的夜間圖像處理辦法,只是還需要更多研究和探索。
2. 在允許使用之前幀信息的賽道二中,該團(tuán)隊僅使用了一些簡單的 IoU 信息。由于收集這個數(shù)據(jù)集的攝像頭一直在移動,該團(tuán)隊之前在類似的數(shù)據(jù)集上使用過一些 SOTA 的方法,卻沒有取得好的效果。他們認(rèn)為之后可以在如何利用時序幀信息方面進(jìn)行深入的探索。
3. 該領(lǐng)域存在大量白天行人檢測的數(shù)據(jù)集,因此該團(tuán)隊認(rèn)為之后可以嘗試 Domain Adaption 方向的方法,以充分利用行人數(shù)據(jù)集。
參考文獻(xiàn):
[1] Lin T Y , Dollár, Piotr, Girshick R , et al. Feature Pyramid Networks for Object Detection[J]. 2016.
[2] Dai J, Qi H, Xiong Y, et al. Deformable Convolutional Networks[J]. 2017.
[3] Cai Z , Vasconcelos N . Cascade R-CNN: Delving into High Quality Object Detection[J]. 2017.
[4] Xie S , Girshick R , Dollar P , et al. Aggregated Residual Transformations for Deep Neural Networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2017.
[5] Bochinski E , Eiselein V , Sikora T . High-Speed tracking-by-detection without using image information[C]// 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2017.
[6] Henriques J F , Caseiro R , Martins P , et al. High-Speed Tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
[7] Song G , Liu Y , Wang X . Revisiting the Sibling Head in Object Detector[J]. 2020.
[8] Li A , Yang X , Zhang C . Rethinking Classification and Localization for Cascade R-CNN[J]. 2019.
[9] Wu, Y., Chen, Y., Yuan, L., Liu, Z., Wang, L., Li, H., & Fu, Y. (2019). Rethinking Classification and Localization in R-CNN. ArXiv, abs/1904.06493.
[10] Liu, Y., Wang, Y., Wang, S., Liang, T., Zhao, Q., Tang, Z., & Ling, H. (2020). CBNet: A Novel Composite Backbone Network Architecture for Object Detection. ArXiv, abs/1909.03625.
圖片新聞
技術(shù)文庫
最新活動更多
推薦專題
- 1 一季度汽車產(chǎn)量省份排名大洗牌!誰在異軍突起?
- 2 2025上海車展看什么?看這一篇就夠了!
- 3 工信部召開智能網(wǎng)聯(lián)汽車產(chǎn)品準(zhǔn)入及軟件在線升級管理工作推進(jìn)會提的內(nèi)容,將如何影響智駕行業(yè)發(fā)展?
- 4 關(guān)稅大戰(zhàn),汽車芯片會漲價嗎
- 5 奇瑞的混動技術(shù):厚積薄發(fā),從發(fā)動機(jī)到混動系統(tǒng)
- 6 重要信號!奇瑞汽車IPO背后大佬現(xiàn)身海信集團(tuán)
- 7 菜鳥順豐京東們正在復(fù)制“特斯拉時刻”, 無人車來了?
- 8 打響智駕平權(quán)第一槍的外資品牌 - 大眾汽車集團(tuán)
- 9 地平線機(jī)器人歷史機(jī)遇期:智駕升級,價值重構(gòu)
- 10 從追趕者到規(guī)則制定者,中國汽車工業(yè)的"哥倫布時刻"正在降臨