侵權(quán)投訴
訂閱
糾錯
加入自媒體

如何處理自動駕駛激光雷達(dá)點云畸變?

激光雷達(dá)作為自動駕駛系統(tǒng)中的核心感知傳感器,通過發(fā)射激光脈沖并接收反射信號,能夠?qū)崟r構(gòu)建出周圍環(huán)境的高精度三維輪廓。激光雷達(dá)在獲取環(huán)境信息的過程中,并不像高快門相機拍攝瞬間照片那樣簡單。像是旋轉(zhuǎn)式激光雷達(dá),每一幀完整點云的生成都需要經(jīng)歷一個持續(xù)的掃描周期,這一周期通常在一百毫秒左右。

在這漫長的一百毫秒內(nèi),自動駕駛汽車并不是靜止不動的,它會處于持續(xù)的位移與旋轉(zhuǎn)之中。這意味著,當(dāng)激光雷達(dá)掃描這一圈的起始點時,車輛處于一個姿態(tài),而當(dāng)它旋轉(zhuǎn)掃描到結(jié)束點時,車輛已經(jīng)行駛到了另一個位置并可能發(fā)生了角度偏移。如果感知系統(tǒng)直接將這些在不同位姿下采集到的點繪制在同一坐標(biāo)系中,就會導(dǎo)致嚴(yán)重的幾何形變,這種現(xiàn)象在行業(yè)內(nèi)被稱為激光雷達(dá)的自運動畸變。

如果不經(jīng)過去畸變處理,車輛所感知的世界將變得扭曲且不真實,原本筆直的道路邊線會呈現(xiàn)弧形,豎直的路燈柱會發(fā)生傾斜,而停在路邊的車輛則可能被拉伸成詭異的長條,這不僅極大干擾了后續(xù)的障礙物檢測與分類,更將直接威脅到自動駕駛路徑規(guī)劃的安全性與準(zhǔn)確性。

激光雷達(dá)掃描機制與運動畸變的物理本質(zhì)

要深入理解去畸變的必要性,必須從激光雷達(dá)的底層掃描邏輯談起。機械旋轉(zhuǎn)式激光雷達(dá)依靠內(nèi)部電機的轉(zhuǎn)動,帶動激光發(fā)射和接收模組進(jìn)行全周向掃描。以常用的十赫茲掃描頻率為例,雷達(dá)每旋轉(zhuǎn)一周需要一百毫秒。在這段時間里,激光束按照極高的頻率不斷發(fā)射,并在擊中物體后返回。每一束激光返回時,傳感器記錄的是相對于此時刻雷達(dá)中心點的距離和角度。

由于車輛在行駛過程中始終帶有速度和角速度,激光雷達(dá)的坐標(biāo)原點在每一束激光發(fā)射的瞬間其實都在發(fā)生位移。這就好比一個人在飛馳的高鐵上拿著畫筆在窗戶上描繪窗外的風(fēng)景,如果畫筆移動的速度不夠快,由于火車的位移,畫出來的樹木必然會橫向拉長。

激光雷達(dá)的掃描方式在計算機視覺領(lǐng)域與“滾動快門”效應(yīng)類似。在相機中,如果感光元件是逐行曝光的,當(dāng)拍攝高速移動的物體時,圖像就會發(fā)生傾斜或扭曲。激光雷達(dá)的每一個點都可以看作是一個獨立的、在微秒級別完成的采樣。將數(shù)萬甚至數(shù)十萬個帶有不同“時刻”的點強行整合進(jìn)一幀數(shù)據(jù)中,本質(zhì)上是忽略了時間的連續(xù)性的。

自運動畸變的大小與車輛的相對速度、旋轉(zhuǎn)角速度以及激光雷達(dá)的掃描幀率密切相關(guān)。在高速公路場景下,如果車輛以每秒三十米的速度行駛,在一百毫秒的掃描周期內(nèi),車身已經(jīng)前移了三米。如果此時不對第一個采樣點和最后一個采樣點進(jìn)行空間上的對齊,那么點云中反映出的障礙物位置偏差將達(dá)到數(shù)米之巨,這對于需要厘米級精度的自動駕駛系統(tǒng)來說是不可接受的。

除了車輛自身的運動,環(huán)境中的動態(tài)障礙物也會導(dǎo)致額外的形變。當(dāng)激光雷達(dá)掃描一輛迎面而來的高速車輛時,由于目標(biāo)物也在移動,雷達(dá)對其表面的采樣點分布會受到雙方相對速度的疊加影響。如果相對速度極快,目標(biāo)車輛在點云中的幾何輪廓會被顯著壓縮或拉長,這種“動態(tài)物體畸變”會導(dǎo)致物體識別算法將原本正常的車輛誤判為其他異形物體。

目前主流的去畸變技術(shù)側(cè)重于消除車輛自身的自運動畸變,而針對其他動態(tài)物體的實時形狀修復(fù)則是當(dāng)下感知領(lǐng)域的前沿研究課題。在多雷達(dá)耦合的硬件架構(gòu)中,如果各傳感器之間的運動補償步調(diào)不一致,不同雷達(dá)產(chǎn)生的點云在融合后會出現(xiàn)嚴(yán)重的重影和分層現(xiàn)象,這對于環(huán)境地圖的構(gòu)建和定位精度將產(chǎn)生災(zāi)難性的后果。

時間同步與高頻軌跡重建的技術(shù)基石

點云去畸變的核心在于“空間對齊”,而實現(xiàn)空間對齊的前提是擁有精確到微秒級的“時間標(biāo)尺”。在自動駕駛系統(tǒng)中,各傳感器擁有獨立的內(nèi)部時鐘,由于硬件晶振的溫漂和處理延遲,如果不進(jìn)行統(tǒng)一,即便算法再優(yōu)秀,也無法將激光點的采集時刻與車輛的精確位姿匹配起來。

為了解決這一問題,自動駕駛系統(tǒng)會引入全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)作為絕對的時間源。GNSS接收機通過發(fā)射每秒脈沖(PPS)信號,強制拉齊計算平臺與激光雷達(dá)的時鐘。在每個秒脈沖到來的時刻,激光雷達(dá)會結(jié)合串口發(fā)送的GPRMC報文,將其內(nèi)部計時器清零或校準(zhǔn)到標(biāo)準(zhǔn)的協(xié)調(diào)世界時(UTC)。這種硬件級別的同步確保了每一個產(chǎn)生的激光點都帶有一個可以追溯到全球標(biāo)準(zhǔn)時間的時間戳。

隨著車載網(wǎng)絡(luò)架構(gòu)向以太網(wǎng)演進(jìn),精密時間協(xié)議(PTP)正逐漸成為主流。PTP協(xié)議能夠在不需要額外PPS物理連線的情況下,通過網(wǎng)絡(luò)報文的收發(fā)和硬件輔助打樁,在整個以太網(wǎng)鏈路內(nèi)實現(xiàn)亞微秒級的同步精度。這種高度一致的時間基準(zhǔn),為后續(xù)的傳感器融合提供了統(tǒng)一的語境。在激光雷達(dá)內(nèi)部,每一條掃描線、甚至是每一個具體的采樣點,都會被貼上一個精準(zhǔn)的時間偏移量。這個偏移量會告訴系統(tǒng),這個點是在本幀開始后的第幾微秒捕獲的。

有了準(zhǔn)確的時間戳,接下來需要重建車輛在一百毫秒掃描周期內(nèi)的連續(xù)運動軌跡。像是組合慣導(dǎo)(INS)這類的車輛定位系統(tǒng),一般只能以一百或兩百赫茲的頻率輸出位姿,這意味著在兩次位姿輸出之間,車輛依然行駛了數(shù)厘米甚至更遠(yuǎn)。為了獲得每一個激光點時刻的精確位置,算法必須通過數(shù)學(xué)手段在離散的定位點之間進(jìn)行“補洞”。線性插值是最簡單的方案,它通過假設(shè)車輛在短時間內(nèi)做勻速運動,計算出激光點的位置。雖然對于直線行駛而言這個方式可以達(dá)到足夠精確的程度,但當(dāng)車輛出現(xiàn)轉(zhuǎn)向或遭遇路面沖擊時,線性插值將無法捕捉到加速度的跳變。

為此,高性能的去畸變方案通常采用基于四元數(shù)的球面線性插值(SLERP)來處理旋轉(zhuǎn)運動。SLERP能夠保證旋轉(zhuǎn)過程中的角速度恒定,生成的姿態(tài)變換比簡單的歐拉角線性插值更加平滑,且能有效避免旋轉(zhuǎn)矩陣在計算過程中的正交性退化問題。

還有更進(jìn)階的算法甚至?xí)脒B續(xù)時間軌跡估計技術(shù),使用三階B樣條曲線或高斯過程來描述車輛的運動。這種方法將位姿表達(dá)為時間的連續(xù)函數(shù),不僅可以查詢?nèi)我鈺r刻的坐標(biāo),還能直接推導(dǎo)出車輛的瞬時速度和加速度,從而極大提升了去畸變處理在復(fù)雜動態(tài)環(huán)境下的適應(yīng)力。

從線性轉(zhuǎn)換到反向傳播

點云去畸變在算法上也經(jīng)歷了從簡單到嚴(yán)密的演進(jìn)。最初的處理方法相對“粗放”,即在獲取一幀點云后,根據(jù)本幀開始和結(jié)束時的位姿差,對中間的所有點進(jìn)行一次性的線性補償。這種方式雖然運算量極小,但在車輛進(jìn)行非勻速運動時,其邊緣處的殘余誤差依然很大。

隨著感知需求的提升,點對點補償成為行業(yè)標(biāo)配。在這一過程中,每一個激光點都會根據(jù)其唯一的時間戳,通過插值算法尋找其對應(yīng)的瞬時變換矩陣。通過將該點的坐標(biāo)左乘這個變換矩陣,就可以將其從采集瞬間的局部坐標(biāo)系轉(zhuǎn)換到一個統(tǒng)一的參考坐標(biāo)系下,這個參考系通常被設(shè)定為本幀掃描開始或結(jié)束那一刻的雷達(dá)中心位置。

開源算法LOAM及其優(yōu)化版LeGO-LOAM提供了一套極其巧妙的邏輯。它們并不是被動地等待定位系統(tǒng)的輸入,而是將去畸變與里程計解算結(jié)合成一個閉環(huán)。算法首先利用上一幀的運動參數(shù)對當(dāng)前幀進(jìn)行一個初步的去畸變預(yù)測。在這個“預(yù)處理”后的點云上,算法提取出具有代表性的邊緣特征點和平面特征點。通過將這些特征點與已有的局部地圖進(jìn)行幾何匹配,算法能夠反推算出車輛在當(dāng)前幀內(nèi)的精確位姿變化。

這種迭代的過程能夠不斷壓縮去畸變的殘余殘差,使得最終生成的點云圖不僅沒有扭曲,而且能與地圖實現(xiàn)完美的重疊。LeGO-LOAM特別針對地面車輛進(jìn)行了優(yōu)化,通過預(yù)先分割地面點云,剔除了由于路面雜草、落葉等噪聲點導(dǎo)致的運動估計偏差,極大地增強了算法在變動地形中的穩(wěn)定性。

進(jìn)入緊耦合時代后,F(xiàn)AST-LIO2等算法引入了更為先進(jìn)的反向傳播補償機制。與傳統(tǒng)的“向前預(yù)測”不同,反向傳播利用高頻IMU數(shù)據(jù)記錄下的完整運動軌跡,從本幀結(jié)束時刻開始,逆向計算出每一個采樣點相對于幀尾位姿的偏移。這種方法的優(yōu)勢在于它能捕捉到極短時間內(nèi)的非線性運動,可以處理車輛經(jīng)過減速帶時的劇烈顛簸的場景。

通過在流式處理過程中直接對原始點云進(jìn)行重映射,F(xiàn)AST-LIO2還避開了繁瑣的特征提取環(huán)節(jié),直接利用全量原始點進(jìn)行地圖匹配。這不僅減少了計算延遲,還使得系統(tǒng)在特征稀疏的隧道或開闊場地中依然能保持極高的定位頻率。為了應(yīng)對海量點云帶來的計算壓力,此類算法還會搭配如ikd-Tree這類的高效的空間索引結(jié)構(gòu),它支持動態(tài)的插入、刪除和負(fù)載均衡,確保了去畸變后的點云能以超過一百赫茲的速率更新到全局地圖中。

從數(shù)學(xué)邏輯上看,去畸變本質(zhì)上是一次復(fù)雜的坐標(biāo)變換。對于點云中的任一點Pi,其在雷達(dá)原始坐標(biāo)系下的坐標(biāo)為Li。我們需要求得該點在某一參考時刻(設(shè)為t0)的坐標(biāo)Wi。變換過程涉及雷達(dá)與IMU之間的外參矩陣TL_I,以及車輛在ti時刻相對于t0時刻的運動矩陣Tti_t0。

具體的計算邏輯可以描述為,將點從雷達(dá)坐標(biāo)系轉(zhuǎn)換到車體坐標(biāo)系,隨后應(yīng)用基于插值得到的瞬時位姿矩陣進(jìn)行空間補償,最后再將其轉(zhuǎn)換回統(tǒng)一的傳感器參考系。需要注意的是,這一過程必須保證旋轉(zhuǎn)部分的計算具有單位正交性。如果簡單地對旋轉(zhuǎn)矩陣的各項進(jìn)行線性加權(quán),會引入數(shù)學(xué)上的奇異性,導(dǎo)致點云在大幅度轉(zhuǎn)向時發(fā)生崩塌。因此,通過四元數(shù)或者李代數(shù)(LieAlgebra)進(jìn)行平滑插值是保證算法數(shù)學(xué)嚴(yán)謹(jǐn)性的關(guān)鍵所在。

空間補償?shù)纳疃热诤吓c感知系統(tǒng)的未來趨勢

點云去畸變的完成標(biāo)志著感知流程中“原始數(shù)據(jù)準(zhǔn)備”階段的結(jié)束。然而,去畸變的效果如何評價,以及它如何影響后續(xù)的神經(jīng)網(wǎng)絡(luò)模型,是感知系統(tǒng)設(shè)計必須面對的問題。

研究表明,由于點云的扭曲改變了物體的反射特征分布,網(wǎng)絡(luò)可能會將一輛正常的小汽車識別成障礙物甚至是漏檢。在未去畸變的點云上直接運行目標(biāo)檢測網(wǎng)絡(luò),會導(dǎo)致物體的置信度得分大幅下降。因此,去畸變不僅是幾何意義上的修復(fù),更是為深度學(xué)習(xí)模型提供一份符合物理常識的輸入。

在多傳感器融合架構(gòu)中,去畸變后的點云能與攝像頭圖像實現(xiàn)更加精準(zhǔn)的空間重疊,這使得系統(tǒng)可以利用圖像的顏色和紋理信息來增強點云的語義分類能力,從而實現(xiàn)對遠(yuǎn)距離細(xì)小目標(biāo)的可靠識別。

去畸變過程本身其實也可以反向為系統(tǒng)提供信息。舉個例子,某些前沿研究利用單幀點云中的運動畸變特征來直接推算物體的速度。既然自運動會導(dǎo)致點云拉伸,那么通過神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)這種拉伸模式,系統(tǒng)甚至可以在不依賴多幀跟蹤的情況下,僅憑一幀數(shù)據(jù)就判斷出路口來車的相對速度。

這種將“畸變”化敵為友的思路,催生了4D激光雷達(dá)感知技術(shù)。在這種語境下,每一個激光點不僅帶有X、Y、Z三維坐標(biāo)和強度信息,還帶有一個瞬時的徑向速度分量。這對于處理高速公路上變道穿插的車輛具有極高的預(yù)警價值。

隨著固態(tài)激光雷達(dá)的興起,去畸變的側(cè)重點其實也在發(fā)生改變。固態(tài)雷達(dá)其實具有極高的采樣頻率或采用全局快門的曝光方式,自運動畸變對其影響相對較小,但其復(fù)雜的掃描圖案(如非重復(fù)性掃描)對空間標(biāo)定提出了更高要求。

未來的去畸變框架將更加模塊化,能夠根據(jù)接入雷達(dá)的不同掃描特性,自動選擇最優(yōu)的補償步長和運動模型。同時,在極端場景下(如隧道中GNSS信號長時間丟失、IMU發(fā)生不可預(yù)知的漂移),系統(tǒng)如何僅依靠激光雷達(dá)自身的掃描相關(guān)性來維持運動軌跡的連續(xù)性,是實現(xiàn)全天候自動駕駛的安全底線。

最后的話

激光雷達(dá)點云的去畸變處理可以將雜亂無章、隨車而動的原始采樣信號轉(zhuǎn)化為一份穩(wěn)定、規(guī)整的環(huán)境底圖。它涉及到從衛(wèi)星授時、慣性導(dǎo)航到李群李代數(shù)等多個學(xué)科的深度融合。正是因為有了這套精密的時間對齊和空間轉(zhuǎn)換機制,自動駕駛車輛才能在高速行駛的動態(tài)世界中,看清每一條車道線的走勢,判別每一個燈柱的位置,并做出安全、理性的判斷。去畸變技術(shù)的每一次進(jìn)步,都在縮短感知與真實物理世界之間的距離,也都在為自動駕駛的早日大規(guī)模落地鋪平道路。

-- END --

       原文標(biāo)題 : 如何處理自動駕駛激光雷達(dá)點云畸變?

聲明: 本文由入駐維科號的作者撰寫,觀點僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

    文章糾錯
    x
    *文字標(biāo)題:
    *糾錯內(nèi)容:
    聯(lián)系郵箱:
    *驗 證 碼:

    粵公網(wǎng)安備 44030502002758號