英偉達(dá)發(fā)布自動(dòng)駕駛故障推理測試平臺(tái)DriveFI
安全性,一直都是自動(dòng)駕駛研發(fā)的關(guān)鍵問題。前幾天,美國官方判定2019年3月全球首個(gè)自動(dòng)駕駛汽車撞死行人事故中,Uber無罪又引起了廣泛關(guān)注。無疑,自動(dòng)駕駛安全性依舊是業(yè)內(nèi)外人士關(guān)注的重點(diǎn)。近日,伊利諾伊大學(xué)香檳分校(CSL)的研究人員公布了如何使用AI和ML,通過軟件和硬件的改進(jìn)來提高自動(dòng)駕駛技術(shù)的安全性,開發(fā)自動(dòng)駕駛可擴(kuò)展安全性測試平臺(tái)DriveFI。
解決自動(dòng)駕駛安全性,這是一個(gè)基于跨學(xué)科、跨技術(shù)、跨領(lǐng)域的攻堅(jiān)問題。此次CSL的可擴(kuò)展的安全性測試平臺(tái)也是匯集了多家公司,包括三星、NVIDIA,還有灣區(qū)的一些初創(chuàng)公司。
該研究小組開發(fā)的這個(gè)平臺(tái),使自動(dòng)駕駛汽車能夠在復(fù)雜多變的環(huán)境中更快、更經(jīng)濟(jì)的解決安全性的問題。
挑戰(zhàn)
這項(xiàng)研究如此具有挑戰(zhàn)性的原因之一是,自動(dòng)駕駛汽車是基于AI和ML集機(jī)械、電子、計(jì)算機(jī)技術(shù)以及實(shí)時(shí)駕駛決策為一體的復(fù)雜系統(tǒng)。典型的自動(dòng)駕駛汽車可以說是一部“帶輪子的超級(jí)計(jì)算機(jī)”,擁有50多個(gè)處理器和加速器,可運(yùn)行超過1億行代碼以支持計(jì)算機(jī)視覺和其他ML任務(wù)。
當(dāng)自動(dòng)駕駛汽車以每小時(shí)70英里的速度行駛時(shí),故障會(huì)給駕駛員帶來重大的安全隱患。一方面,在這樣的速度下,除非有針對(duì)性的對(duì)自動(dòng)駕駛汽車進(jìn)行學(xué)習(xí)培訓(xùn),否則無法預(yù)測其行為軌跡。另一方面,從傳統(tǒng)意義上講,如果在計(jì)算機(jī)或者智能手機(jī)遇到軟件故障時(shí),最常見的處理方式是重啟,但這種方式并不適合自動(dòng)駕駛汽車,并不能讓車隨時(shí)停下,否則會(huì)造成更嚴(yán)重甚至致命的事故。
目前的現(xiàn)行法規(guī),要求Uber和Waymo之類的公司在公共道路上對(duì)車輛進(jìn)行測試,并且每年向加利福尼亞州DMV報(bào)告其車輛的安全性。
基于現(xiàn)狀,研究團(tuán)隊(duì)希望可以探索自動(dòng)駕駛常見的安全問題、汽車的表現(xiàn)以及其理想的安全指標(biāo)是什么。所以他們研發(fā)了這個(gè)可擴(kuò)展測試平臺(tái)。
項(xiàng)目簡介
CSL研究小組分析了2014-2017年提交的所有安全報(bào)告,涵蓋了144輛自動(dòng)駕駛汽車,累計(jì)行駛了1116605英里。他們發(fā)現(xiàn),在行駛相同里程的情況下,人類駕駛汽車發(fā)生事故的可能性比自動(dòng)駕駛汽車少4000倍。這意味著自動(dòng)駕駛汽車未能以驚人的速度適當(dāng)?shù)靥幚砬闆r并脫離技術(shù)設(shè)定,而常常依靠駕駛員來接管。
研究人員和多家公司在研究過程中發(fā)現(xiàn),在自動(dòng)駕駛汽車系統(tǒng)出現(xiàn)特定問題之前,很難訓(xùn)練該軟件來克服這些問題。而該團(tuán)隊(duì)正在使用計(jì)算機(jī)仿真和人工智能來加快這一過程。
本文介紹的平臺(tái)叫做DriveFI,它通過識(shí)別可能導(dǎo)致碰撞和事故的危險(xiǎn)情況來解決上述挑戰(zhàn)。DriveFI包括(a)一個(gè)FI引擎,可以修改一個(gè)自主駕駛系統(tǒng)的軟件和硬件狀態(tài)來模擬故障的發(fā)生,和(b) ML-based故障選擇引擎,我們稱之為貝葉斯故障注入,可以找到最可能的情況和故障導(dǎo)致違反安全條件。相比之下,傳統(tǒng)的FI技術(shù)往往不關(guān)注安全違規(guī),在實(shí)踐中表現(xiàn)率較低,需要大量的測試時(shí)間。
DriveFI的框架能夠通過對(duì)自動(dòng)駕駛車輛在故障狀態(tài)下的行為進(jìn)行因果和反事實(shí)推理,發(fā)現(xiàn)安全關(guān)鍵情況和故障。它通過(a)以車輛運(yùn)動(dòng)學(xué)和AV架構(gòu)的形式整合領(lǐng)域知識(shí),(b)基于橫向和縱向停車距離的安全建模,(c)使用真實(shí)的故障模型來模擬軟錯(cuò)誤和軟件錯(cuò)誤。(a)、(b)和(c)項(xiàng)被集成到一個(gè)貝葉斯網(wǎng)絡(luò)(BN)中。BN提供了一種良好的形式化方法,用可解釋的模型來模擬故障在自動(dòng)駕駛系統(tǒng)組件之間的傳播。BN支持快速概率推理,這使得DriveFI能夠快速找到安全關(guān)鍵的故障。貝葉斯FI框架可以擴(kuò)展到其他安全關(guān)鍵系統(tǒng)(如手術(shù)機(jī)器人)。該框架需要安全約束和系統(tǒng)軟件體系結(jié)構(gòu)的規(guī)范來建模系統(tǒng)子組件之間的因果關(guān)系。
該平臺(tái)使用ADS技術(shù)來支持和代替人類駕駛員來完成控制車輛轉(zhuǎn)向、加速和監(jiān)視周圍環(huán)境(如其他車輛/行人)的任務(wù)。ADS架構(gòu)由5個(gè)基本層組成:
傳感器抽象層(上圖中的1):傳感器抽象層負(fù)責(zé)根據(jù)傳感器類型對(duì)輸入數(shù)據(jù)進(jìn)行預(yù)處理、噪聲濾波、增益控制、色調(diào)映射、去霧化和感興趣區(qū)域的提取。ADS支持多種傳感器,如全球定位系統(tǒng)(GPS)、慣性測量單元(IMU)、聲納、雷達(dá)、激光雷達(dá)和相機(jī)傳感器。研究人員只使用了兩個(gè)攝像頭(安裝在車輛的頂部和前部),還有一個(gè)激光雷達(dá)。
感知層(上圖中的2):傳感器抽象層將數(shù)據(jù)輸入感知層,感知層使用計(jì)算機(jī)視覺技術(shù)(包括深度學(xué)習(xí))檢測靜態(tài)對(duì)象(如車道、交通標(biāo)志、障礙物)和出現(xiàn)在駕駛場景中動(dòng)態(tài)對(duì)象(例如:乘用車、卡車、騎自行車的人、行人)。感知層還負(fù)責(zé)對(duì)象和車道的時(shí)間跟蹤。跟蹤是必要的,以確保一個(gè)對(duì)象不會(huì)因?yàn)榉诸愬e(cuò)誤或檢測失敗而突然從框架中消失。
定位層(上圖中的3):定位層負(fù)責(zé)從各種來源收集數(shù)據(jù),在地圖中定位自動(dòng)駕駛車輛。地圖中的定位可以使用GPS傳感器或使用攝像機(jī)/激光雷達(dá)輸入來完成。本文中描述的研究工作僅使用攝像機(jī)/激光雷達(dá)和地圖來實(shí)現(xiàn)定位,不使用GPS。
預(yù)測層(上圖中的4):預(yù)測層負(fù)責(zé)利用模型中的信息(如位置、標(biāo)題、速度、加速度)生成探測目標(biāo)的軌跡。因此,它可以概率性地識(shí)別自動(dòng)駕駛汽車路徑中的障礙。
規(guī)劃/控制層(上圖中的5):規(guī)劃控制層負(fù)責(zé)根據(jù)車輛的起點(diǎn)和終點(diǎn)生成導(dǎo)航計(jì)劃,并向自動(dòng)駕駛汽車發(fā)送控制信號(hào)(驅(qū)動(dòng)、制動(dòng)、轉(zhuǎn)向)。路由模塊根據(jù)請(qǐng)求生成高級(jí)導(dǎo)航信息,路由模塊需要知道起點(diǎn)和終點(diǎn),以計(jì)算通道的車道和道路。規(guī)劃模塊利用定位輸出、預(yù)測輸出和路由輸出來規(guī)劃安全無碰撞的軌跡?刂颇K以規(guī)劃的軌跡為輸入,生成控制命令傳遞給CAN總線,CAN總線將信息傳遞給機(jī)械部件。監(jiān)視系統(tǒng)監(jiān)視車輛包括硬件在內(nèi)的所有模塊,并將其傳遞到人機(jī)界面,供人工驅(qū)動(dòng)程序查看,以確保所有模塊都在正常運(yùn)行。在模塊或硬件發(fā)生故障時(shí),監(jiān)視器在監(jiān)護(hù)模塊中觸發(fā)警報(bào),然后監(jiān)護(hù)模塊選擇要采取的行動(dòng)來防止事故。
該研究小組目前正在構(gòu)建技術(shù)和工具,以產(chǎn)生最大程度影響安全性的駕駛條件和問題。他們發(fā)現(xiàn)大量的安全關(guān)鍵情況,在這些情況下錯(cuò)誤可能導(dǎo)致事故,而不必枚舉道路上的所有可能性,從而節(jié)省了大量的時(shí)間和金錢。
總結(jié)
NVIDIA架構(gòu)研究副總裁Steve Keckler表示:“自動(dòng)駕駛汽車的安全性對(duì)其在市場和社會(huì)中的成功至關(guān)重要!蔽覀兿M晾Z伊州研究團(tuán)隊(duì)正在開發(fā)的技術(shù)將使工程師能夠更輕松地以較低的成本開發(fā)更安全的汽車系統(tǒng)。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 光計(jì)算迎來商業(yè)化突破,但落地仍需時(shí)間
- 5 大模型下半場:Agent時(shí)代為何更需要開源模型
- 6 中國“智造”背后的「關(guān)鍵力量」
- 7 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?
- 8 營收猛增46%,昆侖萬維成為AI“爆品工廠”
- 9 全球無人駕駛技術(shù)排名:誰才是細(xì)分賽道的扛把子?
- 10 地平線自動(dòng)駕駛方案解讀